From 7b9909b585f6939c28b683bb1be1bd9cdc6a9699 Mon Sep 17 00:00:00 2001
From: arc <zleyyij@users.noreply.github.com>
Date: Thu, 20 Mar 2025 11:27:46 -0600
Subject: [PATCH] vault backup: 2025-03-20 11:27:46

---
 education/math/MATH1210 (calc 1)/Integrals.md | 10 +++++-----
 1 file changed, 5 insertions(+), 5 deletions(-)

diff --git a/education/math/MATH1210 (calc 1)/Integrals.md b/education/math/MATH1210 (calc 1)/Integrals.md
index 26f685c..225d76a 100644
--- a/education/math/MATH1210 (calc 1)/Integrals.md	
+++ b/education/math/MATH1210 (calc 1)/Integrals.md	
@@ -18,11 +18,11 @@ An antiderivative is useful when you know the rate of change, and you want to fi
 | $\dfrac{d}{dx} \ln \|x\| = \dfrac{1}{x}$              | <br>$\int \dfrac{1}{x}dx = \ln \|x\| + C$               |
 | $\dfrac{d}{dx} e^x = e^x$                             | <br>$\int e^x dx = e^x + C$                             |
 | $\dfrac{d}{dx} a^x = (\ln{a}) a^x$                    | $\int a^xdx = \ln \|x\| + C$                            |
-| $\dfrac{d}{dx} \sin x = \cos x$                       | $\int                                                   |
-| $\dfrac{d}{dx} \cos x = -\sin x$                      |                                                         |
-| $\dfrac{d}{dx} \tan{x} = \sec^2 x$                    |                                                         |
-| $\dfrac{d}{dx} \sec x = \sec x \tan x$                |                                                         |
-| $\dfrac{d}{dx} \sin^{-1} x = \dfrac{1}{\sqrt{1-x^2}}$ |                                                         |
+| $\dfrac{d}{dx} \sin x = \cos x$                       | $\int \cos(x) dx  = \sin (x) + C$                       |
+| $\dfrac{d}{dx} \cos x = -\sin x$                      | $\int \sin(x)dx = \sin x + C$                           |
+| $\dfrac{d}{dx} \tan{x} = \sec^2 x$                    | $\int \sec^2(x)dx = \tan(x) + C$                        |
+| $\dfrac{d}{dx} \sec x = \sec x \tan x$                | $\int sec^2(x) dx = \sec(x) + C$                        |
+| $\dfrac{d}{dx} \sin^{-1} x = \dfrac{1}{\sqrt{1-x^2}}$ | $\int \sec(x) \tan(x) = $                               |
 | $\dfrac{d}{dx} \tan^{-1} x = \dfrac{1}{1+x^2}$        |                                                         |
 | $\dfrac{d}{dx} k f(x) = k f'(x)$                      |                                                         |
 | $\dfrac{d}{dx} f(x) \pm g(x) = f'(x) \pm g'(x)$       |                                                         |