vault backup: 2025-04-15 09:36:58
This commit is contained in:
parent
6d430c98fa
commit
79a4ccc0a8
@ -162,6 +162,10 @@ $$ L =\int_a^b \sqrt{1 + f'(x)^2} dx$$
|
|||||||
5. $\frac{13}{12} x \Big| _{-1}^8$
|
5. $\frac{13}{12} x \Big| _{-1}^8$
|
||||||
|
|
||||||
> Find the distance from the point ${\frac{1}{2}, \frac{49}{48}}$ to the point $(5, \frac{314}{15})$ along the curve $y = \dfrac{x^4 - 3}{6x}$
|
> Find the distance from the point ${\frac{1}{2}, \frac{49}{48}}$ to the point $(5, \frac{314}{15})$ along the curve $y = \dfrac{x^4 - 3}{6x}$
|
||||||
1. $y' = \dfrac{4x^3(6x) - (x^4 + 3)6}{36x^2}$
|
1. $y' = \dfrac{4x^3(6x) - (x^4 + 3)6}{36x^2}$: Find the derivative of the curve using the quotient rule
|
||||||
2. $= \dfrac{24x^4 -6x^4 - 18}{36x^2}$
|
2. $= \dfrac{18x^4 - 18}{36x^2}$: Simplify
|
||||||
3.
|
3. $= \dfrac{18(x^4 - 1)}{18(2x^2)}$: Factor out $18$
|
||||||
|
4. $= \dfrac{x^4 - 1}{2x^2}$: Factor out $18$ again
|
||||||
|
5. $L = \int_{1/2}^5 \sqrt{1 + (\dfrac{4x-1}{2x^2})^2}dx$ : Use the length formula
|
||||||
|
6. $= \int_{1/2}^5 \sqrt{1 + \dfrac{x^8 - 2x^4 + 1}{x^4}} dx$: Apply the $^2$
|
||||||
|
7. $= \int_{1/2}^5 \sqrt{\dfrac{4x^4 + x^8 -2x^4 + 1}{4x^4}}$: Set $1 = \dfrac{4x^4}{4x^4}$ and add
|
Loading…
x
Reference in New Issue
Block a user