From 751681d3e047da6f7ec9d25b6e69899cd6c3b902 Mon Sep 17 00:00:00 2001 From: zleyyij Date: Wed, 3 Jan 2024 14:03:11 -0700 Subject: [PATCH] vault backup: 2024-01-03 14:03:11 --- .obsidian/plugins/obsidian-git/data.json | 2 +- education/statistics/Correlation and Regression.md | 2 ++ 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/.obsidian/plugins/obsidian-git/data.json b/.obsidian/plugins/obsidian-git/data.json index 7b1247f..4bc189e 100644 --- a/.obsidian/plugins/obsidian-git/data.json +++ b/.obsidian/plugins/obsidian-git/data.json @@ -2,7 +2,7 @@ "commitMessage": "vault backup: {{date}}", "autoCommitMessage": "vault backup: {{date}}", "commitDateFormat": "YYYY-MM-DD HH:mm:ss", - "autoSaveInterval": 1, + "autoSaveInterval": 5, "autoPushInterval": 0, "autoPullInterval": 5, "autoPullOnBoot": false, diff --git a/education/statistics/Correlation and Regression.md b/education/statistics/Correlation and Regression.md index f5aef14..2fe435f 100644 --- a/education/statistics/Correlation and Regression.md +++ b/education/statistics/Correlation and Regression.md @@ -104,6 +104,8 @@ $$ \hat{y} = \frac{x-\bar{x}}{\sigma_x} * r * \sigma_y + \bar{y} $$ Predicting a y value for a given x value can be calculated when given the regression equation. $$ y = mx + b $$ Where $y$ is the predicted value, $m$ is the slope, $x$ is the given value and the $b$ is the intercept. +$$ intercept = \bar{y} - $$ + $$ slope = \frac{r * \sigma_y}{\sigma_x} $$ #### Residual plots