vault backup: 2025-03-27 09:56:27
This commit is contained in:
parent
6776d3e417
commit
6e882be276
27
.obsidian/plugins/obsidian-git/data.json
vendored
27
.obsidian/plugins/obsidian-git/data.json
vendored
@ -1,27 +0,0 @@
|
|||||||
{
|
|
||||||
"commitMessage": "vault backup: {{date}}",
|
|
||||||
"autoCommitMessage": "vault backup: {{date}}",
|
|
||||||
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
|
||||||
"autoSaveInterval": 5,
|
|
||||||
"autoPushInterval": 0,
|
|
||||||
"autoPullInterval": 5,
|
|
||||||
"autoPullOnBoot": true,
|
|
||||||
"disablePush": false,
|
|
||||||
"pullBeforePush": true,
|
|
||||||
"disablePopups": false,
|
|
||||||
"listChangedFilesInMessageBody": false,
|
|
||||||
"showStatusBar": true,
|
|
||||||
"updateSubmodules": false,
|
|
||||||
"syncMethod": "merge",
|
|
||||||
"customMessageOnAutoBackup": false,
|
|
||||||
"autoBackupAfterFileChange": false,
|
|
||||||
"treeStructure": false,
|
|
||||||
"refreshSourceControl": true,
|
|
||||||
"basePath": "",
|
|
||||||
"differentIntervalCommitAndPush": false,
|
|
||||||
"changedFilesInStatusBar": false,
|
|
||||||
"showedMobileNotice": true,
|
|
||||||
"refreshSourceControlTimer": 7000,
|
|
||||||
"showBranchStatusBar": true,
|
|
||||||
"setLastSaveToLastCommit": false
|
|
||||||
}
|
|
@ -86,11 +86,3 @@ Average = $\dfrac{1}{b-a} \int_a^b f(x)dx$
|
|||||||
# The Fundamental Theorem of Calculus
|
# The Fundamental Theorem of Calculus
|
||||||
Let $f$ be a continuous function on the closed interval $[a, b]$ and let $F$ be any antiderivative of $f$, then:
|
Let $f$ be a continuous function on the closed interval $[a, b]$ and let $F$ be any antiderivative of $f$, then:
|
||||||
$$\int_a^b f(x) dx = F(b) - F(a)$$
|
$$\int_a^b f(x) dx = F(b) - F(a)$$
|
||||||
## Proof
|
|
||||||
## Mean Value Theorem
|
|
||||||
Between the interval $[a, b]$, the average rate of change of a function **must be equal** to at least one point between $[a, b]$:
|
|
||||||
$$ f'(c) = \dfrac{f(b) - f(a)}{x-a} $$
|
|
||||||
For some $c$ between $a$ and $b$.
|
|
||||||
|
|
||||||
1. $F(b) - F(a) = F(x_1) - F(x_0)$
|
|
||||||
2. $= (F(x_1) - F(x_0) + (F(x_2) - F(x_1) + (F(X_3) - F(X_2) + \cdots + (F(x_n) - f(x_{n - 1})$ 3. $=
|
|
Loading…
x
Reference in New Issue
Block a user