vault backup: 2024-09-18 12:12:12
This commit is contained in:
parent
867c6b849f
commit
6e475df77a
@ -5,15 +5,23 @@ All of the following only apply when the denominator is not equal to zero.
|
|||||||
$$ tan \theta = \frac{y}{x} $$
|
$$ tan \theta = \frac{y}{x} $$
|
||||||
Because the following are inverses of their counterparts, you only need to remember the equivalents for $sin$, $cos$, and $tan$, then just find the inverse by taking $1/v$.
|
Because the following are inverses of their counterparts, you only need to remember the equivalents for $sin$, $cos$, and $tan$, then just find the inverse by taking $1/v$.
|
||||||
|
|
||||||
| Base Identity | Inverse Identity | Alternate Identities | Alternate Inverse Identities |
|
| Base Identity | Inverse Identity | Alternate Identities | Alternate Inverse Identities |
|
||||||
| ----------------------------- | ------------------------------ | --------------------------------------------- | ------------------------------------------------------------------------- |
|
| ----------------------------- | ------------------------------ | --------------------------------------------- | --------------------------------------------------------------------- |
|
||||||
| $$ sin\theta = y $$ | $$ csc\theta = \frac{1}{y} $$ | | $$ csc\theta = \frac{1}{sin\theta} $$ |
|
| $$ sin\theta = y $$ | $$ csc\theta = \frac{1}{y} $$ | | $$ csc\theta = \frac{1}{sin\theta} $$ |
|
||||||
| $$ cos\theta = x $$ | $$ sec \theta = \frac{1}{x} $$ | | |
|
| $$ cos\theta = x $$ | $$ sec \theta = \frac{1}{x} $$ | | $$ sec\theta = \frac{1}{cos\theta} $$ |
|
||||||
| $$ tan\theta = \frac{y}{x} $$ | $$ cot\theta = \frac{x}{y} $$ | $$ tan\theta = \frac{sin\theta}{cos\theta} $$ | <br>$$ cot\theta = \frac{1}{tan\theta} = \frac{cos\theta}{sin{\theta}} $$ |
|
| $$ tan\theta = \frac{y}{x} $$ | $$ cot\theta = \frac{x}{y} $$ | $$ tan\theta = \frac{sin\theta}{cos\theta} $$ | $$ cot\theta = \frac{1}{tan\theta} = \frac{cos\theta}{sin{\theta}} $$ |
|
||||||
| | | | |
|
|
||||||
$$ cot \theta = \frac{x}{y} $$
|
$$ cot \theta = \frac{x}{y} $$
|
||||||
$$ sec\theta = \frac{1}{cos\theta}$$
|
$$ sec\theta = \frac{1}{cos\theta}$$
|
||||||
$$ csc\theta = \frac{1}{sin\theta}$$
|
$$ csc\theta = \frac{1}{sin\theta}$$
|
||||||
# Pythagorean Identities
|
# Pythagorean Identities
|
||||||
The Pythagorean identity expresses the Pythagorean theorem in terms of trigonometric functions. It's a basic relation between the sine and cosine functions.
|
The Pythagorean identity expresses the Pythagorean theorem in terms of trigonometric functions. It's a basic relation between the sine and cosine functions.
|
||||||
$$ sin^2 \theta + cos^2 \theta = 1 $$
|
$$ sin^2 \theta + cos^2 \theta = 1 $$
|
||||||
|
There are more forms that are useful, but they can be derived from the above formula:
|
||||||
|
$$ 1 + tan^2\theta = sec^2\theta $$
|
||||||
|
$$ cot^2 \theta + 1 = csc^2\theta $$
|
||||||
|
# Even and Odd Identities
|
||||||
|
- A function is even if $f(-x) = f(x)$.
|
||||||
|
- A function is odd if $f(-x) = -f(x)$
|
||||||
|
Cosine and secant are **even*
|
||||||
|
## Examples
|
||||||
|
Loading…
Reference in New Issue
Block a user