From 693a196db575b1e77a14dcd04657a3cd2090e68e Mon Sep 17 00:00:00 2001
From: arc <zleyyij@users.noreply.github.com>
Date: Thu, 20 Mar 2025 11:41:15 -0600
Subject: [PATCH] vault backup: 2025-03-20 11:41:15

---
 education/math/MATH1210 (calc 1)/Integrals.md | 34 ++++++++++---------
 1 file changed, 18 insertions(+), 16 deletions(-)

diff --git a/education/math/MATH1210 (calc 1)/Integrals.md b/education/math/MATH1210 (calc 1)/Integrals.md
index f4c1a23..1fa084d 100644
--- a/education/math/MATH1210 (calc 1)/Integrals.md	
+++ b/education/math/MATH1210 (calc 1)/Integrals.md	
@@ -2,7 +2,9 @@
 An antiderivative is useful when you know the rate of change, and you want to find a point from that rate of change
 
 > A function $F$ is said to be an *antiderivative* of $f$ if $F'(x) = f(x)$ 
-
+## Notation
+The collection of all antiderivatives of a function $f$ is referred to as the *indefinite integral of $f$ with respect to $x$*, and is denoted by:
+$$ \int f(x) dx $$
 ## Examples
 > Find the antiderivative of the function $y = x^2$
 
@@ -11,18 +13,18 @@ An antiderivative is useful when you know the rate of change, and you want to fi
 
 ## Formulas
 
-| Differentiation Formula                               | Integration Formula                                     |
-| ----------------------------------------------------- | ------------------------------------------------------- |
-| $\dfrac{d}{dx} x^n = nx^{x-1}$                        | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
-| $\dfrac{d}{dx} kx = k$                                | $\int k \space dx = kx + C$                             |
-| $\dfrac{d}{dx} \ln \|x\| = \dfrac{1}{x}$              | <br>$\int \dfrac{1}{x}dx = \ln \|x\| + C$               |
-| $\dfrac{d}{dx} e^x = e^x$                             | <br>$\int e^x dx = e^x + C$                             |
-| $\dfrac{d}{dx} a^x = (\ln{a}) a^x$                    | $\int a^xdx = \ln \|x\| + C$                            |
-| $\dfrac{d}{dx} \sin x = \cos x$                       | $\int \cos(x) dx  = \sin (x) + C$                       |
-| $\dfrac{d}{dx} \cos x = -\sin x$                      | $\int \sin(x)dx = \sin x + C$                           |
-| $\dfrac{d}{dx} \tan{x} = \sec^2 x$                    | $\int \sec^2(x)dx = \tan(x) + C$                        |
-| $\dfrac{d}{dx} \sec x = \sec x \tan x$                | $\int sec^2(x) dx = \sec(x) + C$                        |
-| $\dfrac{d}{dx} \sin^{-1} x = \dfrac{1}{\sqrt{1-x^2}}$ | $\int \sec(x) \tan(x) dx = \sec x + C$                  |
-| $\dfrac{d}{dx} \tan^{-1} x = \dfrac{1}{1+x^2}$        | \int \dfrac{1}{\sqrt{1}}                                |
-| $\dfrac{d}{dx} k f(x) = k f'(x)$                      |                                                         |
-| $\dfrac{d}{dx} f(x) \pm g(x) = f'(x) \pm g'(x)$       |                                                         |
+| Differentiation Formula                               | Integration Formula                                       |
+| ----------------------------------------------------- | --------------------------------------------------------- |
+| $\dfrac{d}{dx} x^n = nx^{x-1}$                        | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$   |
+| $\dfrac{d}{dx} kx = k$                                | $\int k \space dx = kx + C$                               |
+| $\dfrac{d}{dx} \ln \|x\| = \dfrac{1}{x}$              | <br>$\int \dfrac{1}{x}dx = \ln \|x\| + C$                 |
+| $\dfrac{d}{dx} e^x = e^x$                             | <br>$\int e^x dx = e^x + C$                               |
+| $\dfrac{d}{dx} a^x = (\ln{a}) a^x$                    | $\int a^xdx = \ln \|x\| + C$                              |
+| $\dfrac{d}{dx} \sin x = \cos x$                       | $\int \cos(x) dx  = \sin (x) + C$                         |
+| $\dfrac{d}{dx} \cos x = -\sin x$                      | $\int \sin(x)dx = \sin x + C$                             |
+| $\dfrac{d}{dx} \tan{x} = \sec^2 x$                    | $\int \sec^2(x)dx = \tan(x) + C$                          |
+| $\dfrac{d}{dx} \sec x = \sec x \tan x$                | $\int sec^2(x) dx = \sec(x) + C$                          |
+| $\dfrac{d}{dx} \sin^{-1} x = \dfrac{1}{\sqrt{1-x^2}}$ | $\int \sec(x) \tan(x) dx = \sec x + C$                    |
+| $\dfrac{d}{dx} \tan^{-1} x = \dfrac{1}{1+x^2}$        | $\int \dfrac{1}{\sqrt{1+x^2}}dx = \tan^{-1}x + C$         |
+| $\dfrac{d}{dx} k f(x) = k f'(x)$                      | $\int k*f(x)dx = k\int f(x)dx$                            |
+| $\dfrac{d}{dx} f(x) \pm g(x) = f'(x) \pm g'(x)$       | $\int (f(x) \pm g(x))dx = \int f(x) dx \pm \int g(x) dx$  |