vault backup: 2025-09-29 12:50:33
This commit is contained in:
@ -69,9 +69,12 @@ $$ \lim_{n \to \infty} \frac{n(n+1)}{2} = \infty $$
|
||||
|
||||
Given the above info, the limit is non-zero, so we know that the series diverges.
|
||||
|
||||
## Geometric Series
|
||||
# Geometric Series
|
||||
A geometric series of the form:
|
||||
$$ \sum_{n = 1}^\inifty ar^{n-1} = \sum_{n=0}^\infty ar^n $$
|
||||
$$ \sum_{n = 1}^\infty ar^{n-1} = \sum_{n=0}^\infty ar^n $$
|
||||
Converges to $\dfrac{a}{1-r}$ if $|r| < 1$ or diverges if $|r| >= 1$.
|
||||
|
||||
# E
|
||||
# Examples:
|
||||
|
||||
> Determine if the series $\sum_{n=1}^{\infty}35(7^{-n} * 2^{n-1})$ diverges or converges. If it converges, state where.
|
||||
|
||||
|
Reference in New Issue
Block a user