vault backup: 2025-03-27 09:51:27
This commit is contained in:
parent
d78c1ecd7a
commit
6776d3e417
27
.obsidian/plugins/obsidian-git/data.json
vendored
27
.obsidian/plugins/obsidian-git/data.json
vendored
@ -0,0 +1,27 @@
|
|||||||
|
{
|
||||||
|
"commitMessage": "vault backup: {{date}}",
|
||||||
|
"autoCommitMessage": "vault backup: {{date}}",
|
||||||
|
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
||||||
|
"autoSaveInterval": 5,
|
||||||
|
"autoPushInterval": 0,
|
||||||
|
"autoPullInterval": 5,
|
||||||
|
"autoPullOnBoot": true,
|
||||||
|
"disablePush": false,
|
||||||
|
"pullBeforePush": true,
|
||||||
|
"disablePopups": false,
|
||||||
|
"listChangedFilesInMessageBody": false,
|
||||||
|
"showStatusBar": true,
|
||||||
|
"updateSubmodules": false,
|
||||||
|
"syncMethod": "merge",
|
||||||
|
"customMessageOnAutoBackup": false,
|
||||||
|
"autoBackupAfterFileChange": false,
|
||||||
|
"treeStructure": false,
|
||||||
|
"refreshSourceControl": true,
|
||||||
|
"basePath": "",
|
||||||
|
"differentIntervalCommitAndPush": false,
|
||||||
|
"changedFilesInStatusBar": false,
|
||||||
|
"showedMobileNotice": true,
|
||||||
|
"refreshSourceControlTimer": 7000,
|
||||||
|
"showBranchStatusBar": true,
|
||||||
|
"setLastSaveToLastCommit": false
|
||||||
|
}
|
@ -87,8 +87,10 @@ Average = $\dfrac{1}{b-a} \int_a^b f(x)dx$
|
|||||||
Let $f$ be a continuous function on the closed interval $[a, b]$ and let $F$ be any antiderivative of $f$, then:
|
Let $f$ be a continuous function on the closed interval $[a, b]$ and let $F$ be any antiderivative of $f$, then:
|
||||||
$$\int_a^b f(x) dx = F(b) - F(a)$$
|
$$\int_a^b f(x) dx = F(b) - F(a)$$
|
||||||
## Proof
|
## Proof
|
||||||
|
|
||||||
## Mean Value Theorem
|
## Mean Value Theorem
|
||||||
Between the interval $[a, b]$, the average rate of change of a function **must be equal** to at least one point between $[a, b]$:
|
Between the interval $[a, b]$, the average rate of change of a function **must be equal** to at least one point between $[a, b]$:
|
||||||
$$ f'(c) = \dfrac{f(b) - f(a)}{x-a} $$
|
$$ f'(c) = \dfrac{f(b) - f(a)}{x-a} $$
|
||||||
For some $c$ between $a$ and $b$.
|
For some $c$ between $a$ and $b$.
|
||||||
|
|
||||||
|
1. $F(b) - F(a) = F(x_1) - F(x_0)$
|
||||||
|
2. $= (F(x_1) - F(x_0) + (F(x_2) - F(x_1) + (F(X_3) - F(X_2) + \cdots + (F(x_n) - f(x_{n - 1})$ 3. $=
|
Loading…
x
Reference in New Issue
Block a user