vault backup: 2025-09-03 12:54:06
This commit is contained in:
@ -4,7 +4,10 @@ The below integration makes use of the following trig identities:
|
|||||||
3. The derivative of cosine: $\dfrac{d}{dx} \cos(x) = -\sin(x)$
|
3. The derivative of cosine: $\dfrac{d}{dx} \cos(x) = -\sin(x)$
|
||||||
4. Half angle cosine identity: $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$
|
4. Half angle cosine identity: $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$
|
||||||
5. Half angle sine identity: $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$
|
5. Half angle sine identity: $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$
|
||||||
6. $tan^2(x) + 1 = sec^2(x) \Rightarrow \int \sec^2(x)$
|
6. $tan^2(x) + 1 = sec^2(x)$
|
||||||
7. $\dfrac{d}{dx}(\tan(x)) = \sec^2(x)$
|
7. $\dfrac{d}{dx}(\tan(x)) = \sec^2(x) \Rightarrow \int \sec^2(x)dx = \tan(x) + C$
|
||||||
8.
|
8. $\dfrac{d}{dx}(\sec x) = \sec(x)\tan(x) \Rightarrow \int\sec(x)\tan(x) dx = \sec(x) + C$
|
||||||
|
|
||||||
|
# Examples
|
||||||
|
> Evaluate the integral $\int\sin^5(x)dx$
|
||||||
|
1. With trig identities, it's common to work *backwards* with u-sub, so we know that
|
Reference in New Issue
Block a user