vault backup: 2025-10-01 12:29:00
This commit is contained in:
@@ -77,5 +77,6 @@ Converges to $\dfrac{a}{1-r}$ if $|r| < 1$ or diverges if $|r| >= 1$.
|
|||||||
# Examples:
|
# Examples:
|
||||||
|
|
||||||
> Determine if the series $\sum_{n=1}^{\infty}35(7^{-n} * 2^{n-1})$ diverges or converges. If it converges, state where.
|
> Determine if the series $\sum_{n=1}^{\infty}35(7^{-n} * 2^{n-1})$ diverges or converges. If it converges, state where.
|
||||||
1. Rewrite $7^{-n}$ to move it out of the exponent
|
1. Rewrite $7^{-n}$ as $(\frac{1}{7})^n$ to be closer to the form $ar^n$
|
||||||
|
$$ = \sum_{n=1}^\infty 35*($$
|
||||||
2.
|
2.
|
Reference in New Issue
Block a user