vault backup: 2025-09-22 14:26:22
This commit is contained in:
@ -18,4 +18,6 @@ and say that $a_n$ *converges* to $L$. If no $L$ exists, we say $\{a_n\}$ *diver
|
||||
1. $a_n + b_n \to L + M$
|
||||
2. $C*a_n \to CL$
|
||||
3. $a_n b_n \to LM$
|
||||
4.
|
||||
4. $\frac{a_n}{b_n} \to \frac{L}{M}$ holds true where all values are defined
|
||||
5. If $L = M$ and a sequence $c_n$ exists such that $a_n \le c_n \le b_n$ for all $n$, then $c_n \to L = M$
|
||||
6. If $a_n$ and $b_n$ both approach infinity at a similar rate, $\frac{a_n}{b_n}$ will approach an arbitrary value. This value can be found by rewriting $\frac{a_n}{b_n}$ in such a manner
|
||||
|
Reference in New Issue
Block a user