vault backup: 2025-08-25 12:19:25

This commit is contained in:
arc
2025-08-25 12:19:25 -06:00
parent 91b0492ce7
commit 5734922dae

View File

@ -0,0 +1,12 @@
# Formal Definition
Let $f$ be a continuous function on an interval $[a, b]$.
Divide $[a, b]$ into $n$ equal parts of width $\Delta x = \dfrac{b-a}{n}$.
Let $x_0, x_1, x_2, \cdots, x_n$ be the endpoints of this subdivision. $x_0 = a$ and $x_n = b$.
Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$
- $\Delta x$ refers to the width of each sub-interval
- $f(x_i)$ refers to the height of each subinterval.
Then let $f$ be a continous function on $[a, b]$ and let $F$ be the any derivative of $f$ (i.e )