vault backup: 2025-08-25 12:19:25
This commit is contained in:
12
education/math/MATH1220 (calc II)/Integral Review.md
Normal file
12
education/math/MATH1220 (calc II)/Integral Review.md
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
# Formal Definition
|
||||||
|
Let $f$ be a continuous function on an interval $[a, b]$.
|
||||||
|
|
||||||
|
Divide $[a, b]$ into $n$ equal parts of width $\Delta x = \dfrac{b-a}{n}$.
|
||||||
|
|
||||||
|
Let $x_0, x_1, x_2, \cdots, x_n$ be the endpoints of this subdivision. $x_0 = a$ and $x_n = b$.
|
||||||
|
|
||||||
|
Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$
|
||||||
|
- $\Delta x$ refers to the width of each sub-interval
|
||||||
|
- $f(x_i)$ refers to the height of each subinterval.
|
||||||
|
|
||||||
|
Then let $f$ be a continous function on $[a, b]$ and let $F$ be the any derivative of $f$ (i.e )
|
Reference in New Issue
Block a user