From 560ca7b056de10729f0bdeb900e6747ea39ba6d4 Mon Sep 17 00:00:00 2001 From: arc Date: Tue, 26 Aug 2025 12:41:25 -0600 Subject: [PATCH] vault backup: 2025-08-26 12:41:25 --- education/math/MATH1220 (calc II)/Integral Review.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/education/math/MATH1220 (calc II)/Integral Review.md b/education/math/MATH1220 (calc II)/Integral Review.md index ce78244..351e798 100644 --- a/education/math/MATH1220 (calc II)/Integral Review.md +++ b/education/math/MATH1220 (calc II)/Integral Review.md @@ -7,7 +7,7 @@ Let $x_0, x_1, x_2, \cdots, x_n$ be the endpoints of this subdivision. $x_0 = a$ Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$ - $\Delta x$ refers to the width of each sub-interval -- $f(x_i)$ refers to the height of each subinterval. +- $f(x_i)$ refers to the height of each subinterval, and can be found with the equation $x_i = \Delta xi + a$ Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$). Then $\int_a^b f(x) dx = F(b) - F(a)$.