vault backup: 2024-10-28 11:05:14
This commit is contained in:
parent
a18e3fa00d
commit
5325bb45e2
@ -1,3 +1,7 @@
|
|||||||
|
To solve for a double or half angle identity:
|
||||||
|
1. Draw a triangle
|
||||||
|
2. Choose an identity to use
|
||||||
|
3. Substitute into formula
|
||||||
# Double Angle Identities
|
# Double Angle Identities
|
||||||
Sine:
|
Sine:
|
||||||
$$ \sin(2\theta) = 2\sin\theta\cos\theta $$
|
$$ \sin(2\theta) = 2\sin\theta\cos\theta $$
|
||||||
@ -20,4 +24,10 @@ $$ \sin(\frac{\theta}{2}) = \pm\sqrt{\frac{1-\cos\theta}{2}} $$
|
|||||||
Cosine:
|
Cosine:
|
||||||
$$ \cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1 + \cos\theta}{2}} $$
|
$$ \cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1 + \cos\theta}{2}} $$
|
||||||
Tangent:
|
Tangent:
|
||||||
$$ \tan(\frac{\theta}{2}) = \pm\sqrt{\frac{1-\cos\theta}{1 + \cos\theta}} $$
|
$$
|
||||||
|
\begin{matrix}
|
||||||
|
\tan(\dfrac{\theta}{2}) = \pm\sqrt{\dfrac{1-\cos\theta}{1 + \cos\theta}}\\
|
||||||
|
= \dfrac{\sin\theta}{1 + \cos\theta}\\
|
||||||
|
= \dfrac{1 - cos\theta}{\sin\theta}
|
||||||
|
\end{matrix}
|
||||||
|
$$
|
Loading…
Reference in New Issue
Block a user