vault backup: 2025-03-09 20:20:41
This commit is contained in:
parent
e31518946e
commit
514a50618d
@ -197,7 +197,8 @@ $$ \dfrac{d}{dx} \sec x = \sec x * \tan x $$
|
|||||||
$$ \dfrac{d}{dx} \csc x = -\csc x \cot x $$
|
$$ \dfrac{d}{dx} \csc x = -\csc x \cot x $$
|
||||||
## Cotangent
|
## Cotangent
|
||||||
$$ \dfrac{d}{dx} \cot x = -\csc^2 x $$
|
$$ \dfrac{d}{dx} \cot x = -\csc^2 x $$
|
||||||
|
## Arcsin
|
||||||
|
$$ \dfrac{d}{dx}(\arcsin(x) = \dfrac{1}{\sqrt{1-x^2}}$$
|
||||||
# Implicit Differentiation
|
# Implicit Differentiation
|
||||||
- There's a reason differentials are written like a fraction
|
- There's a reason differentials are written like a fraction
|
||||||
- $\dfrac{d}{dx} x^2 = \dfrac{d(x^2)}{dx}$, or, "the derivative of $x^2$ with respect to $x$"
|
- $\dfrac{d}{dx} x^2 = \dfrac{d(x^2)}{dx}$, or, "the derivative of $x^2$ with respect to $x$"
|
||||||
|
Loading…
x
Reference in New Issue
Block a user