vault backup: 2025-01-30 09:53:44
This commit is contained in:
parent
1544af34a4
commit
4dd7ed010b
@ -67,8 +67,8 @@ $$ \lim_{h \to 0} nx^{n-1} + P_{n3} x^{n-2}*0 \cdots v * 0 $$
|
|||||||
The zeros leave us with:
|
The zeros leave us with:
|
||||||
|
|
||||||
$$ f(x) = n, \space f'(x) = nx^{n-1} $$
|
$$ f(x) = n, \space f'(x) = nx^{n-1} $$
|
||||||
# Addition/Subtraction Derivative Rule
|
# Sum and Difference Rules
|
||||||
You can add and subtract derivatives to find what the derivative of the whole derivative would be.
|
$$ \dfrac{d}{dx}(f(x) \pm g(x)) = f'(x) \pm g'(x) $$
|
||||||
|
|
||||||
# Product Rule
|
# Product Rule
|
||||||
$$ \dfrac{d}{dx} (f(x) * g(x)) = \lim_{h \to 0} \dfrac{f(x +h) * g(x + h) - f(x)g(x)}{h} $$
|
$$ \dfrac{d}{dx} (f(x) * g(x)) = \lim_{h \to 0} \dfrac{f(x +h) * g(x + h) - f(x)g(x)}{h} $$
|
||||||
@ -81,4 +81,6 @@ Then break into two different fractions:
|
|||||||
|
|
||||||
$$\lim_{h \to 0} \dfrac{f(x + h)}{1} * \dfrac{(g(x + h) - g(x))}{h)} + \dfrac{g(x)}{1} *\dfrac{f(x + h) - f(x)}{h} $$
|
$$\lim_{h \to 0} \dfrac{f(x + h)}{1} * \dfrac{(g(x + h) - g(x))}{h)} + \dfrac{g(x)}{1} *\dfrac{f(x + h) - f(x)}{h} $$
|
||||||
From here, you can take the limit of each fraction, therefore showing that to find the derivative of two values multiplied together, you can use the formula:
|
From here, you can take the limit of each fraction, therefore showing that to find the derivative of two values multiplied together, you can use the formula:
|
||||||
$$ \dfrac{d}{dx}(f(x) * g(x)) = f(x) * g'(x) + f'(x)*
|
$$ \dfrac{d}{dx}(f(x) * g(x)) = f(x) * g'(x) + f'(x) $$
|
||||||
|
# Natural Exponential Function
|
||||||
|
$$ \dfrac{d}{dx} e^x = e^x $$
|
Loading…
x
Reference in New Issue
Block a user