vault backup: 2025-02-18 09:56:11
This commit is contained in:
parent
0eeea19351
commit
38e1b487ec
27
.obsidian/plugins/obsidian-git/data.json
vendored
27
.obsidian/plugins/obsidian-git/data.json
vendored
@ -1,27 +0,0 @@
|
||||
{
|
||||
"commitMessage": "vault backup: {{date}}",
|
||||
"autoCommitMessage": "vault backup: {{date}}",
|
||||
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
||||
"autoSaveInterval": 5,
|
||||
"autoPushInterval": 0,
|
||||
"autoPullInterval": 5,
|
||||
"autoPullOnBoot": true,
|
||||
"disablePush": false,
|
||||
"pullBeforePush": true,
|
||||
"disablePopups": false,
|
||||
"listChangedFilesInMessageBody": false,
|
||||
"showStatusBar": true,
|
||||
"updateSubmodules": false,
|
||||
"syncMethod": "merge",
|
||||
"customMessageOnAutoBackup": false,
|
||||
"autoBackupAfterFileChange": false,
|
||||
"treeStructure": false,
|
||||
"refreshSourceControl": true,
|
||||
"basePath": "",
|
||||
"differentIntervalCommitAndPush": false,
|
||||
"changedFilesInStatusBar": false,
|
||||
"showedMobileNotice": true,
|
||||
"refreshSourceControlTimer": 7000,
|
||||
"showBranchStatusBar": true,
|
||||
"setLastSaveToLastCommit": false
|
||||
}
|
@ -139,19 +139,28 @@ This is used when you want to take the derivative of a function raised to a func
|
||||
|
||||
1. $\dfrac{d}{dx} x^x$
|
||||
2. $y = x^x$
|
||||
3. $\ln y = \ln x^x$
|
||||
3. Take the natural log of both sides: $\ln y = \ln x^x$
|
||||
4. $\ln(y) = x*\ln(x)$
|
||||
5. $\dfrac{d}{dx} \ln y = \dfrac{d}{dx} x \ln x$
|
||||
6. $\dfrac{1}{y} \dfrac{dy}{dx} = 1 * \ln x + x * \dfrac{1}{x}$
|
||||
5. Use implicit differentiation: $\dfrac{d}{dx} \ln y = \dfrac{d}{dx} x \ln x$
|
||||
6. Solve for $\dfrac{dy}{dx}$: $\dfrac{1}{y} \dfrac{dy}{dx} = 1 * \ln x + x * \dfrac{1}{x}$
|
||||
7. $\dfrac{dy}{dx} = (\ln x + 1) * y$
|
||||
8. Referring back to step 2, $y = x^x$, so the final form is:
|
||||
9. $\dfrac{dy}{dx} = (\ln(x) + 1)x^x$
|
||||
|
||||
### Examples
|
||||
> Find the derivative of the function $y = (2x \sin x)^{3x}$
|
||||
|
||||
1. $\ln y = \ln (3x \sin x)^{3x}$
|
||||
2. $\ln y = 3x * ln(2x \sin x)$*
|
||||
# Chain Rule
|
||||
$$ \dfrac{d}{dx} f(g(x)) = f'(g(x))*g'(x) $$
|
||||
## Examples
|
||||
> Given the function $(x^2+3)^4$, find the derivative.
|
||||
|
||||
Using the chain rule, the above function might be described as $f(g(x))$, where $f(x) = x^4$, and $g(x) = x^2 + 3)$.
|
||||
7. First find the derivative of the outside function function ($f(x) = x^4$):
|
||||
3. First find the derivative of the outside function function ($f(x) = x^4$):
|
||||
$$ \dfrac{d}{dx} (x^2 +3)^4 = 4(g(x))^3 ...$$
|
||||
8. Multiply that by the derivative of the inside function, $g(x)$, or $x^2 + 3$.
|
||||
4. Multiply that by the derivative of the inside function, $g(x)$, or $x^2 + 3$.
|
||||
$$ \dfrac{d}{dx} (x^2 + 3)^4 = 4(x^2 + 3)^3 * (2x)$$
|
||||
> Apply the chain rule to $x^4$
|
||||
|
||||
@ -187,7 +196,7 @@ $$ \dfrac{d}{dx} \cot x = -\csc^2 x $$
|
||||
- Given the equation $y = x^2$, $\dfrac{d}{dx} y = \dfrac{dy}{dx} = 2x$.
|
||||
|
||||
Given these facts:
|
||||
9. Let $y$ be some function of $x$
|
||||
10. $\dfrac{d}{dx} x = 1$
|
||||
11. $\dfrac{d}{dx} y = \dfrac{dy}{dx}$\
|
||||
5. Let $y$ be some function of $x$
|
||||
6. $\dfrac{d}{dx} x = 1$
|
||||
7. $\dfrac{d}{dx} y = \dfrac{dy}{dx}$\
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user