vault backup: 2025-01-13 13:29:26
This commit is contained in:
@ -38,9 +38,17 @@ Given the below truth table, synthesize a boolean expression that corresponds.
|
||||
| 0 | 1 | 1 |
|
||||
| 1 | 0 | 0 |
|
||||
| 1 | 1 | 1 |
|
||||
- $f(0, 0)$ evaluates to true with the term $\overline{x}_1 \cdot \overline{x}_2$
|
||||
- $f(0, 1)$ evaluates to true with the term $\overline{x}_1\cdot x_2$
|
||||
|
||||
- $f(0, 0)$ evaluates to true with the expression $\overline{x}_1 \cdot \overline{x}_2$
|
||||
- $f(0, 1)$ evaluates to true with the expression $\overline{x}_1\cdot x_2$
|
||||
- $f(1, 0)$ should provide an output of zero, so that can be ignored
|
||||
- $f(1, 1)$ evaluates to true with the expression $x_1 \cdot x_2$
|
||||
ORing all of the above expression together, we get:
|
||||
$$ f(x_1, x_2) = \overline{x}_1\overline{x}_2 + \overline{x}_1 x_2 + x_1x_2 $$
|
||||
$$
|
||||
\begin{equation}
|
||||
= x_1 \\
|
||||
\end{equation}
|
||||
$$
|
||||
# Logic Gates
|
||||
|
||||

|
||||
|
Reference in New Issue
Block a user