diff --git a/education/math/MATH1210 (calc 1)/Limits.md b/education/math/MATH1210 (calc 1)/Limits.md index 54340c8..a45d17b 100644 --- a/education/math/MATH1210 (calc 1)/Limits.md +++ b/education/math/MATH1210 (calc 1)/Limits.md @@ -25,7 +25,8 @@ To find this limit if it exists we must perform some mathematical manipulations - Combine fractions in the numerator or denominator of a complex fraction # Limits of the Form $\frac{k}{0}, k \ne 0$ -If we have a one sided limit of the form $\lim_{x \to a^*} \frac{f(x)}{g(x)}$ +If we have a one sided limit of the form $\lim_{x \to a^*} \frac{f(x)}{g(x)}$ $f(x) \to k (k \ne 0)$ and $g(x) \to 0$ as $x \to a$ then: +$$ \lim_{x \to a^*} \frac{f(x)}{g(x)} = \infty \space or \space \lim_{x \to a^*} \frac{f(x)}{g(x)} = -\infty $$ # Continuity A function is continuous if their graph can be traced with a pencil without lifting the pencil from the page.