diff --git a/education/math/MATH1220 (calc II)/Integral Review.md b/education/math/MATH1220 (calc II)/Integral Review.md index 8962b58..6844735 100644 --- a/education/math/MATH1220 (calc II)/Integral Review.md +++ b/education/math/MATH1220 (calc II)/Integral Review.md @@ -14,6 +14,11 @@ Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivati Then $\int_a^b f(x) dx = F(b) - F(a)$. ## Examples +1. Find the area under the curve between 0 and 1 of the function $f(x) = x^2$ $$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$ - -$$ \int_{-2}^2 2x + 2dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x $$ \ No newline at end of file +2. Find the Riemann Sum under the curve between -2 and 2 of the function $2x + 2$. +$$ \int_{-2}^2 (2x + 2)dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x $$ +> Using the fact that $x_i = \Delta x + a$, $ +$$ = lim_{n \to \infty} \sum_{i=1}^n(2x_i + 2)\frac{4}{n}$$ +$$ = \lim_{n \to \infty} \sum_{i = 1}^n (2(-2 +\frac{4i}{n}) + 2)\frac{4}{n}$$ +$$ = \lim_{n \to \infty} \sum_{i = 1}^n(-4 + \frac{8i}{n} + 2)\frac{4}{n} $$ \ No newline at end of file