vault backup: 2025-10-01 12:44:00
This commit is contained in:
@@ -85,4 +85,6 @@ $$ = \sum_{n=1}^\infty \frac{35}{7}(\frac{1}{7})^{n-1}* 2^{n-1} = \sum_{n = 1}^\
|
||||
$$\sum_{n=1}^{\infty}35(7^{-n} * 2^{n-1}) = \dfrac{\frac{35}{7}}{1-\frac{2}{7}}$$
|
||||
|
||||
# Divergence Test
|
||||
If $\lim_{n \to \infty} a_n \ne 0$ then $\sum_{a}
|
||||
**If $\lim_{n \to \infty} a_n \ne 0$ then $\sum_{n=1}^\infty a_n$diverges.**
|
||||
|
||||
The divergence test only tells us that if the limit does not equal zero, then the series diverges. If the limit is zero, it doesn't necessarily mean the series converges.
|
Reference in New Issue
Block a user