vault backup: 2025-03-06 09:49:22
This commit is contained in:
@ -97,3 +97,5 @@ If the $\lim_{x \to a}f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$ then $\lim_{x
|
||||
To evaluate an indeterminate product ($0 * \infty$), use algebra to convert the product to an equivalent quotient and then use L'Hopsital's Rule.
|
||||
|
||||
$$ \lim_{x \to 0^+} x\ln(x) = \lim_{x \to 0^+}\dfrac{\ln x}{\dfrac{1}{x}} = \lim_{x \to 0^+} \dfrac{1/x}{-1/(x^2)} = \lim_{x \to 0^+} -x = 0 $$
|
||||
# Indeterminate form $(\infty - \infty)$:
|
||||
If the $\lim_{x \to a}f(x) = \infty$ and $\lim_{x \to a} (g(x)) = \infty$ , then $\lim_{x \to a}(f(x) - g(x))$ may or may not exist.
|
Reference in New Issue
Block a user