vault backup: 2024-01-25 10:20:02
This commit is contained in:
parent
72ab2aa67f
commit
2ac2db6ea1
@ -36,3 +36,17 @@ Exponents can be moved to the front of a logarithm
|
|||||||
$$ log_3 x^5 = 5*log_3 x $$
|
$$ log_3 x^5 = 5*log_3 x $$
|
||||||
Roots are just the inverse, so:
|
Roots are just the inverse, so:
|
||||||
$$ log_3 sqrt(x) = \frac{1}{2}*log_3x $$
|
$$ log_3 sqrt(x) = \frac{1}{2}*log_3x $$
|
||||||
|
## Change of base
|
||||||
|
$$ log_b x = \frac{\log x}{\log b} = \frac{\ln x}{\ln b} $$
|
||||||
|
The above are all equivalent because the ratios are the same
|
||||||
|
|
||||||
|
|
||||||
|
### The compound interest formula
|
||||||
|
$$ A= Pe^{rt} $$
|
||||||
|
|
||||||
|
| Value | Description |
|
||||||
|
| ---- | ---- |
|
||||||
|
| $A$ | Ending amount |
|
||||||
|
| $P$ or $A_0$ | Starting amount |
|
||||||
|
| $r$ or $k$ | Rate (a %) |
|
||||||
|
| $t$ | The amount of times interest is compounded |
|
||||||
|
Loading…
Reference in New Issue
Block a user