vault backup: 2025-09-29 12:40:33
This commit is contained in:
@ -40,7 +40,7 @@ Remember, L'Hospital's rule states that:
|
||||
# Series
|
||||
Vocabulary: A **series** is another name for a sum of numbers.
|
||||
|
||||
## Properties
|
||||
## The Limit Test
|
||||
You can break a series into *partial sums*:
|
||||
$$\sum_{n=1}^\infty a_n = a_1 + 1_2 + a_3 + ...$$
|
||||
Given the above series, we can define the following:
|
||||
@ -52,10 +52,16 @@ Given the above series, we can define the following:
|
||||
and say that the sum converges to $L$.
|
||||
|
||||
## Examples
|
||||
> Prove that $\sum_{n = 1}^\infty a_n = L$
|
||||
> Prove that $\sum_{n = 1}^\infty \frac{1}{2^n} = 1$
|
||||
- $S_1 = \frac{1}{2}$
|
||||
- $S_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$
|
||||
- $S_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$
|
||||
- $S_n = \frac{2^n - 1}{2^n}$
|
||||
So:
|
||||
$$ \sum_{n=1}^\infty \frac{1}{2^n} = \lim_{n \to \infty}S_n = \lim_{n \to \infty} (1 - \frac{}{}$$
|
||||
$$ \sum_{n=1}^\infty \frac{1}{2^n} = \lim_{n \to \infty}S_n = \lim_{n \to \infty} (1 - \frac{1}{2^n}) = 1$$
|
||||
|
||||
> Using the limit test, determine whether the series $\sum_{n = 1}^\infty n$ converges or diverges
|
||||
- $S_1 = 1$
|
||||
- $S_2 = 1 + 2 = 3$
|
||||
- $S_n = \frac{n(n+1)}{2}$
|
||||
So:
|
Reference in New Issue
Block a user