vault backup: 2024-09-23 11:41:45
This commit is contained in:
parent
b54005308c
commit
26114a6527
@ -55,4 +55,9 @@ $$ \sqrt{\frac{576}{49}} = tan\theta $$
|
|||||||
$\sqrt{576} = 24$ and $\sqrt{49} = 7$, so:
|
$\sqrt{576} = 24$ and $\sqrt{49} = 7$, so:
|
||||||
$$ tan\theta = \frac{24}{7} $$
|
$$ tan\theta = \frac{24}{7} $$
|
||||||
2. To find $cos\theta$, because $sec$ is the inverse of $cos$, we can use the identity $sec\theta = \frac{1}{cos\theta}$:
|
2. To find $cos\theta$, because $sec$ is the inverse of $cos$, we can use the identity $sec\theta = \frac{1}{cos\theta}$:
|
||||||
So $cos\theta = -\frac{7}{25}$.
|
$cos\theta = -\frac{7}{25}$
|
||||||
|
|
||||||
|
3. To find $sin\theta$, we can use the trig identity $sin^2\theta + cos^2\theta = 1$:
|
||||||
|
$$ sin^2\theta + (-\frac{7}{25}) = 1 $$
|
||||||
|
Rearranging, we get:
|
||||||
|
$$ 1 - (-\frac{7}{25} = sin^2\theta $$
|
||||||
|
Loading…
Reference in New Issue
Block a user