From 12d39ed9f90c122e26c44c6b12ef4560a80fac98 Mon Sep 17 00:00:00 2001 From: arc Date: Mon, 22 Sep 2025 14:11:22 -0600 Subject: [PATCH] vault backup: 2025-09-22 14:11:22 --- .../Integration with Trig Identities.md | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/education/math/MATH1220 (calc II)/Integration with Trig Identities.md b/education/math/MATH1220 (calc II)/Integration with Trig Identities.md index 80ddc53..bbfa1f7 100644 --- a/education/math/MATH1220 (calc II)/Integration with Trig Identities.md +++ b/education/math/MATH1220 (calc II)/Integration with Trig Identities.md @@ -74,4 +74,12 @@ $$ \int\frac{3}{4+x^2}dx = \frac{3}{2}\arctan(\frac{x}{2}) + C $$ | $\sin^2(x) + \cos^2(x) = 1$ | | $1 + \tan^2(x) = \sec^2(x)$ | | $1 + \cot^2(x) = \csc^2(x)$ | -| $1 \ No newline at end of file + +| Sum and Difference | +| --------------------------------------------------- | +| $\sin(A \pm B) = \sin(A)\cos(B) \pm \cos(A)\sin(B)$ | +| $\cos(A \pm B) = \cos(A)\cos(B) \mp \sin(A)\sin(B)$ | +| $\sin(2x) = 2\sin(x)\cos(x)$ | +| $\cos(2x) = \cos^2(x) - \sin^2(x)$ | +| $\cos^2(x) = \frac{1}{2}(1 + \cos(2x)$ | +| |