diff --git a/education/math/MATH1220 (calc II)/Integration with Trig Identities.md b/education/math/MATH1220 (calc II)/Integration with Trig Identities.md index 59828f1..9831767 100644 --- a/education/math/MATH1220 (calc II)/Integration with Trig Identities.md +++ b/education/math/MATH1220 (calc II)/Integration with Trig Identities.md @@ -13,5 +13,11 @@ The below integration makes use of the following trig identities: $$ \int\sin^4(x)\sin(x)dx$$ 2. Rewrite $sin^4(x)$ to be $(\sin^2(x))^2$ to take advantage of the trig identity $1 - \cos^2(x) = \sin^2(x)$ $$ \int(\sin^2x)^2 \sin(x)dx$$ -3. Apply the above trig identity: -$$ \int(1) \ No newline at end of file +3. Apply the above trig identity and substitute $u$: +$$ \int(1 - u^2)^2 (-du) $$ +4. Foil out and move negative out of integral: +$$ -\int(1 - 2u^2 + u^4)du $$ +5. Take advantage of the distributive property of integrals: + $$ - (u - \frac{2}{3}u^3 + \frac{1}{5}u^5) + C $$ + 6. Substituting $\cos(x)$ back in for $u$, we get the evaluated (but not entirely simplified) integral: + $$-(\cos(x)- \frac{2}{3}\cos^3x + \frac{1}{5}\cos^5x) $$ \ No newline at end of file