vault backup: 2025-02-18 09:36:10

This commit is contained in:
arc 2025-02-18 09:36:10 -07:00
parent c63861e8f4
commit 0e758ef864

View File

@ -122,7 +122,15 @@ $$ \dfrac{d}{dx}(\dfrac{f(x)}{g(x)}) = \dfrac{f'(x)g(x) -f(x)g'(x)}{(g(x))^2} $
$$ \dfrac{d}{dx} e^x = e^x $$ $$ \dfrac{d}{dx} e^x = e^x $$
$$ \dfrac{d}{dx}a^x = a^x*(\ln(a)) $$ $$ \dfrac{d}{dx}a^x = a^x*(\ln(a)) $$
for all $a > 0$ for all $a > 0$
# Logarithms
For natural logarithms:
$$ \dfrac{d}{dx} \ln |x| = \dfrac{1}{x} $$
For other logarithms:
$$ \dfrac{d}{dx} \log_a x = \dfrac{1}{(\ln a) x}$$
When solving problems that make use of logarithms, consider making use of logarithmic properties to make life easier, eg:
$$ \ln(\dfrac{x}{y}) = \ln(x) - \ln(y) $$
# Chain Rule # Chain Rule
$$ \dfrac{d}{dx} f(g(x)) = f'(g(x))*g'(x) $$ $$ \dfrac{d}{dx} f(g(x)) = f'(g(x))*g'(x) $$
## Examples ## Examples