diff --git a/education/math/MATH1220 (calc II)/Integral Review.md b/education/math/MATH1220 (calc II)/Integral Review.md index 9efb9bb..b91947d 100644 --- a/education/math/MATH1220 (calc II)/Integral Review.md +++ b/education/math/MATH1220 (calc II)/Integral Review.md @@ -23,7 +23,3 @@ $$ \sum_{i = 1}^n i = \frac{n(n+1)}{2}$$ $$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$ 2. Find the Riemann Sum under the curve between -2 and 2 of the function $2x + 2$. $$ \int_{-2}^2 (2x + 2)dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x $$ -> Using the fact that $x_i = \Delta xi + a$, $f(x_i) = 2$ -$$ = lim_{n \to \infty} \sum_{i=1}^n(2x_i + 2)\frac{4}{n}$$ -$$ = \lim_{n \to \infty} \sum_{i = 1}^n (2(-2 +\frac{4i}{n}) + 2)\frac{4}{n}$$ -$$ = \lim_{n \to \infty} \sum_{i = 1}^n(-4 + \frac{8i}{n} + 2)\frac{4}{n} $$ \ No newline at end of file