2024-10-28 17:05:14 +00:00
|
|
|
To solve for a double or half angle identity:
|
|
|
|
1. Draw a triangle
|
|
|
|
2. Choose an identity to use
|
|
|
|
3. Substitute into formula
|
2024-10-28 16:50:14 +00:00
|
|
|
# Double Angle Identities
|
2024-10-28 16:55:14 +00:00
|
|
|
Sine:
|
2024-10-28 16:45:14 +00:00
|
|
|
$$ \sin(2\theta) = 2\sin\theta\cos\theta $$
|
2024-10-28 16:55:14 +00:00
|
|
|
Cosine:
|
2024-10-28 16:50:14 +00:00
|
|
|
$$
|
|
|
|
\begin{matrix}
|
|
|
|
\cos(2\theta) = \cos^2\theta - \sin^2\theta\\
|
|
|
|
= 1 - 2sin^2\theta\\
|
|
|
|
= 2cos^2\theta - 1\\
|
|
|
|
\end{matrix}
|
|
|
|
$$
|
2024-10-28 16:55:14 +00:00
|
|
|
|
|
|
|
Tan:
|
|
|
|
$$ \tan(2\theta) = \dfrac{2\tan\theta}{1-\tan^2\theta}$$
|
|
|
|
|
|
|
|
## Half Angle Identities
|
|
|
|
Whether the output is positive or negative depends on what quadrant the output is in.
|
|
|
|
Sine:
|
|
|
|
$$ \sin(\frac{\theta}{2}) = \pm\sqrt{\frac{1-\cos\theta}{2}} $$
|
|
|
|
Cosine:
|
|
|
|
$$ \cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1 + \cos\theta}{2}} $$
|
|
|
|
Tangent:
|
2024-10-28 17:05:14 +00:00
|
|
|
$$
|
|
|
|
\begin{matrix}
|
|
|
|
\tan(\dfrac{\theta}{2}) = \pm\sqrt{\dfrac{1-\cos\theta}{1 + \cos\theta}}\\
|
|
|
|
= \dfrac{\sin\theta}{1 + \cos\theta}\\
|
|
|
|
= \dfrac{1 - cos\theta}{\sin\theta}
|
|
|
|
\end{matrix}
|
|
|
|
$$
|