- As an example, given a *well behaved function* $f(x)$ and the fact that:
- $f(1.9) = 8.41$
- $f(1.999) = 8.99401$
- $f(2.1) = 9.61$
- $f(2.01) = 9.061$
- $f(2.0001) = 9.0006$
We can note that the smaller the distance of the input value $x$ to $2$, the smaller the distance of the output to $9$. This is most commonly described in the terms "As $x$ approaches $2$, $f(x)$ approaches $9$. $ \rarrow$"